Gọi a (quyển), b (quyển), c (quyển) lần lượt là số quyển sách của lớp 7A, 7B, 7C đã quyên góp (a, b, c \(\in\) N*)
Do số sách của ba lớp 7A, 7B, 7C tỉ lệ với các số 3; 4; 5 nên:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Do tổng số sách đã quyên góp là 240 quyển nên:
\(a+b+c=240\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{240}{12}=20\)
\(\dfrac{a}{3}=20\Rightarrow a=20.3=60\)
\(\dfrac{b}{4}=20\Rightarrow b=20.4=80\)
\(\dfrac{c}{5}=20\Rightarrow c=20.5=100\)
Vậy số sách đã quyên góp của lớp 7A, 7B, 7C lần lượt là: 60 quyển, 80 quyển, 100 quyển
240:(3+4+5)=20
số sách các lớp lần lượt là
3x20=60
4x20=80
5x20=100