Giai : Gọi số sách ba lớp 7A;7B;7C là a,b,c (\(a,b,c\inℕ\))
Từ đề bài ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{22}{2}=11\)
Từ \(\frac{a}{3}=11\Leftrightarrow a=33\)
=> \(\frac{b}{4}=11\Leftrightarrow b=44\)
=> \(\frac{c}{5}=11\Leftrightarrow c=55\)
Vậy số sách giáo khoa cũ của các lớp 7A;7B;7C lần lượt là 33 (quyển); 44 (quyển) ; 55 (quyển)
Gọi số sách của 7A là a, 7B là b, 7C là c. Ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(c-a=22\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{22}{2}=11\)
Suy ra: \(a=3.11=33;b=4.11=44;c=5.11=55\)