Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB= 2R. Hạ BN và DM cùng vuông góc với đường chéo AC
a) chứng minh tứ giác CBMD nội tiếp
b) chứng minh rằng BD*DC=DN*AC
Giúp với
cho hình bình hành ABCD , có đỉnh D nằm trên đường tròn , đường kính bằng 2R . hạ BN và DM cùng vuông góc với đường chéo AC
a) Chứng minh C,B,M,D cùng thuộc 1 đường tròn
b) Chứng minh DB.DC=DN.AC
c) Xác định vị trí điểm D để hình bình hành ABCD có diện tích lớn nhất và tính diện tích của hình bình hành trong trường hợp này
mọi người giải giúp dùm nhá
1.Cho nửa đường tròn (O) đường kính AB , trên nửa đường tròn lấy điểm D bất kì . Dựng hình bình hành ABCD . Kẻ DM vuông với AC , BN vuông với AC (M,N thuộc AC) . Tìm vị trí của D trên nửa đường tròn (O) sao cho : tích BN x AC lớn nhất
2*.Cho nửa đt (O;R) đường kính AB. M là điểm di động trên nửa đường tròn. Tiếp tuyến tại M cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C và D. AM cắt BD tại I. CMR: OI vuông góc BC
3*.Cho tam giác ABC nội tiếp đường tròn (O;R) , ba đường cao AD , BE , CF của tam giác ABC cắt đường tròn (O) lần lượt tại K, N, M . Tính giá trị của biểu thức : AK/AD + BN/BE + CM/CF
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Cho tam giác ABC (AB < AC), Phân giác AD(D thuộc BC).Từ D hạ DH vuông góc với AB, DK vuông góc với AC.
Chứng minh rằng các điểm H và K nằm trên đường tròn đường kính AD.
Cho hình chữ nhật ABCD kẻ AH vuông góc với đường chéo BD. biết BH=16, AH=12 Bạn đã gử
a. Tính DH và các cạnh của hình chữ nhật ABCD Bạn đã gửi
b. Chứng minh rằng bốn điểm A B C D cùng nằm trên 1 đường tròn, tính bán kính đường tròn đó
Cho hình vuông ABCD cạnh a. a) Chứng minh: bốn đỉnh A, B, C và D của hình vuông trên cùng nằm trên một đường tròn. b) Xác định tâm và bán kính của đường tròn đó.
cho đường tròn (O) đường kính AB. trên tia AB lấy điểm D nằm ngoài đoạn thẳng AB và kẻ tiếp tuyến DC với đường tròn (O) ( C là tiếp điểm) . gọi E là chab đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC . chứng minh tứ giác EFDA nội tiếp
Cho hình vuông ABCD cạnh a. a) Chứng minh: bốn đỉnh A, B, C và D của hình vuông trên cùng nằm trên một đường tròn. b) Xác định tâm và bán kính của đường tròn đó.
giúp mk với mk đang cần gấp