Cho tam giác nhọn ABC (AB<AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE. Tia AH cắt BC tại F,
a) Chứng minh AF vuông góc với BC và tứ giác BEHF nội tiếp
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF nội tiếp
c) DF cắt Ce tại N. Qua N kẻ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K. Chứng minh N là trung điểm của IK
Cho tam giác nhọn ABC, đường cao AH, H thuộc BC. P thuộc AB sao cho CP là phân giác góc BCA.
Giao điểm của CB và AH là Q. Trung trực của PQ cắt AH và BC lần lượt tại E, F.
1). PE giao AC tại K. Chứng minh rằng PK vuông góc AC.
Cho tam giác ABC có M là trung điểm của trung tuyến AD, N là điểm thỏa mãn hệ thức: 3vecto AN=vectoAC
a) Chứng minh rằng 3 điểm B, M, N thẳng hàng.
b) Trên AB lấy điểm I sao cho vecto AI=2/3AB, trên AC lấy điểm J sao cho vecto AJ=2/5 vecto AC .
Chứng minh rằng 3 điểm I, M, J thẳng hàng.
giúp em làm phần b với ạ,,em cần gấp ạ
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường trong (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC và (O) lần lượt tại F và K (K\(\ne\)A). Gọi L là hình chiếu cuả D lên AB.
a, C/m: Tứ giác BEDC nội tiếp và BD2 = BL.
b, Gọi J là giao điểm của KD và (O) ,(J \(\ne\)K). C/m: \(\widehat{BJK}=\widehat{BDE}\)
c, Gọi I là giao điểm của BJ và ED. C/m: Tứ giác ALIJ nội tiếp và I là trung điểm của ED.
Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC , E là trung điểm MH . Chứng minh AE vuông góc với BH
Bài 4 : ( 3,5 điểm)Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 60o, AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm
Bài 4: (3,5 điểm) Cho đường tròn tâm (O) với dây AB cố định không phải đường kính. Gọi C là điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. M; N lần lượt là điểm chính giữa của cung nhỏ AB; AC. Gọi I là giao điểm của BN và CM. Dây MN cắt AB và AC lần lượt tại H và K.
a) Chứng minh tứ giác BMHI nội tiếp
b) Chứng minh MK.MN = MI.MC
c) Chứng minh tứ giác AKI cân tại K và tứ giác AHIK là hình thoi.
Cho hình thang ABCD có AB // CD, CD = 3AB. Gọi E, F là các điểm trên cạnh DC sao cho DE = EF = FC, O là giao điểm của À và BE, K là điểm thuộc cạnh bên BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\).
1) Chứng minh đẳng thức sau : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
2) Tìm x để 3 điểm D, O, K thẳng hàng.
Trong mặt phẳng Oxy, cho tam giác ABC vuông cân tại B. Điểm D nằm trên
cạnh BC, điểm E là hình chiếu vuông góc của D lên AC và điểm K(6;2) là trung điểm
của AD. Tìm tọa độ các đỉnh của tam giác ABC, biết phương trình đường
thẳng BE là x-2y-7=0 diện tích tam giác ABC bằng 18.