Hình hộp chữ nhật chỉ có hai đáy là hai hình vuông có tất cả bao nhiêu mặt phẳng đối xứng?
A. 4
B. 3
C. 9
D. 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Biết hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy. Hình chóp này có bao nhiêu mặt phẳng đối xứng
A. 4
B. 1
C. 0
D. 2
Cho hình hộp đứng ABCD.A' B' C' D' có đáy là hình thoi, AC = 6a, BD = 8a. Chu vi của một đáy bằng 4 lần chiều cao của khối hộp. Thể tích của khối hộp ABCD.A' B' C' D' là:
A. 240 a 3
B. 120 a 3
C. 40 a 3
D. 80 a 3
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi, cạnh a 3 . Hình chiếu vuông góc với B' trên mặt phẳng (ABCD) là trung điểm AC, mặt phẳng (CDD'C') tạo với đáy góc 60 0 .Tính theo a thể tích khối hộp ABCD.A'B'C'D'
A . 9 a 3 8
B . a 3 8
C . 27 a 3 8
D . 2 a 3 3 9
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, biết A'A=A'B=A'C=4a. Hình chóp A’.ABC có tất cả bao nhiêu mặt phẳng đối xứng?
A. 3.
B. Không có.
C. 4.
D. 2.
Hình hộp chữ nhật với ba kích thước phân biệt có bao nhiêu mặt phẳng đối xứng?
A. 6
B. 4
C. 3
D. 2
Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4.
B. 3.
C. 6.
D. 9.
Trên mặt phẳng (α) cho hình vuông ABCD. Các tia Ax, By, Cz, Dt vuông góc với mặt phẳng (α) và nằm về một phía đối với mặt phẳng (α). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz, Dt tại A', B', C', D'.
a) Tứ giác A', B', C', D' là hình gì? Chứng minh rằng .
b) Chứng minh rằng điều kiện để tứ giác A', B', C', D' là hình thoi là nó có hai đỉnh đối diện cách đều mặt phẳng (α).
c) Chứng minh rằng điều kiện để tứ giác A', B', C', D' là hình chữ nhật là nó có hai đỉnh kề nhau cách đều mặt phẳng (α).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A,B,C,D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy ?
A. 4 mặt phẳng
B. 2 mặt phẳng.
C. 1 mặt phẳng.
D. 5 mặt phẳng.