Gọi số đỉnh, số cạnh, số mặt của hình đa diện trong hình vẽ bên lần lượt là a, b, c. Hỏi T = a + b - c bằng bao nhiêu?
A. T = 10
B. T = 14
C. T = 38
D. T = 22
Hình đa diện trong hình vẽ bên có bao nhiêu mặt ?
A. 4
B. 6
C. 5
D. 7
Hình đa diện trong hình vẽ bên có bao nhiêu mặt?
A. 10
B. 15
C. 8
D. 11
Hình đa diện trong hình vẽ bên có bao nhiêu mặt?
A. 10
B. 15
C. 8
D. 11
Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Hình đa diện trong hình vẽ có bao nhiêu mặt?
A. 6
B. 10
C. 11
D. 12
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 ° . Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V 1 khối đa diện còn lại có thể tích V 2 (tham khảo hình vẽ bên đây). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, B A D ^ = 60 ° và SA vuông góc với mặt phẳng (ABCD). Góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 450. Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ bên). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình đa diện như hình vẽ, trong đó ABCD.A'B'C'D' là hình hộp chữ nhật với AB=2a, AA'=2a; S.ABCD là hình chóp có các cạnh bên bằng nhau và bằng a 3 . Thể tích của khối tứ diện SA'BD bằng
A. 2 a 3
B. 2 a 3 3
C. a 3 2 2
D. a 3 2 6