Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Biết SA vuông góc với mặt phẳng đáy và SA = 3a. Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 12 a 3
C. 2 a 3
D. 1 3 a 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a, SA vuông góc với đáy và SA = a 3 Tính thể tích khối chóp S.ABCD
A . 2 a 3 3
B . 4 a 3 3
C . 4 a 3 3 3
D . 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, SA vuông góc với mặt phẳng (ABCD), S A = a 3 . Thể tích của khối chóp S.ABC là:
A. 2 a 3 3 3
B. 2 a 3 3
C. a 3 3
D. a 3 3 3
Hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 1 và AD = 3 . Cạnh bên SA vuông góc với mặt phẳng đáy và SC tạo với mặt phẳng (ABCD) một góc 60 0 . Tính thể tích V của khối chóp S,ABCD
A. V = 3
B. V = 2
C. V = 6
D. V = 1
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a, AD=3a. Cạnh bên SA vuông góc với đáy (ABCD), SA=a. Tính thể tích V của khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB= a 3 và AD = a . Đường thẳng SA vuông góc với mặt phẳng đáy và SA=a. Thể tích khối cầu ngoại tiếp hình chóp S.BCD bằng?
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a 3 , AD=a, SA vuông góc với mặt đáy và mặt phẳng (SBC) tạo với đáy một góc 60 o . Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, AD = b, SA vuông góc với đáy, SA = 2a. Điểm M thuộc đoạn SA, AM = x. Giá trị của x để mặt phẳng (MBC) chia khối S.ABCD thành hai khối có thể tích bằng nhau là:
A . x = ( 2 + 5 ) a
B . x = ( 3 + 5 ) a
C . x = ( 2 - 5 ) a
D . x = ( 3 - 5 ) a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng SC tạo với đáy một góc Khi đó, thể tích của khối chóp S.ABCD bằng
A . a 3 17 3
B . a 3 17 3
C . a 3 17 9
D . a 3 17 6