Cho hình chóp S . ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a 3 , SA ⊥ (ABCD), SC tạo với đáy một góc 450 . Gọi M là trung điểm của SB , N là điểm trên cạnh SC sao cho
SN = 1 2 NC . Tính thể tích khối chóp S . AMN
A. a 3 3 9
B. a 3 3 18
C. a 3 3 12
D. a 3 3 6
Cho hình chóp tứ giác S. ABCD đáy là hình bình hành có thể tích bằng V. Lấy điểm B', D' lần lượt là trung điểm của cạnh SB và SD. Mặt phẳng qua (AB'D') cắt cạnh SC tại C'. Khi đó thể tích khối chóp S. AB'C'D' bằng:
A. V 3
B. 2 V 3
C. V 3 3
D. V 6
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N thuộc cạnh SD sao cho SN = 2ND. Tính thể tích V của khối tứ diện ACMN.
A. V = 1 8 a 3
B. V = 1 6 a 3
C. V = 1 36 a 3
D. V = 1 12 a 3
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2SD. Tính thể tích V của khối tứ diện ACMN.
A. V = 1 12 a 3
B. V = 1 6 a 3
C. V = 1 8 a 3
D. V = 1 36 a 3
cho hình chóp đều SABCD. Gọi M,N lần lượt là trung điểm của SB,SD. Mặt phẳng (AMN) cắt SC tại E. Tính V SAMEN/VSABCD
Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết V S . A E F = 1 4 V S . A B C . Tính thể tích V của khối chóp S. ABC.
A. a 3 2
B. a 3 8
C. 2 a 3 5
D. a 3 12
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy, biết SC = a 3 . Gọi M, N, P, Q lần lượt là trung điểm các cạnh SB, SD, CD, BC. Tính thể tích khối chóp AMNPQ
A. a 3 3
B. a 3 4
C. a 3 8
D. a 3 12
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB, SD, SC lần lượt tại B', D', C'. Thể tích khối chóp S. AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC = 2ES. Gọi α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, α cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6
B. V 27
C. V 9
D. V 12