Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N thuộc cạnh SD sao cho SN = 2ND. Tính thể tích V của khối tứ diện ACMN.
A. V = 1 8 a 3
B. V = 1 6 a 3
C. V = 1 36 a 3
D. V = 1 12 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2ND. Tính thể tích V của khối tứ diện ACMN.




Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN = 2ND. Tính tỉ số thể tích V A C M N V S A B C D




Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC. AD=3CB=3a, AB=a, SA=a 3 . Điểm I thỏa mãn A D → = 3 A I → , M là trung điểm SD, H là giao điểm của AM và SI. Gọi E, F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD)



![]()
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết SA vuông góc với mặt đáy, SB = 2a. Gọi M, N lần lượt là trung điểm SB, BC. Tính thể tích V của khối chóp A.SCNM?
A. V = a 3 3 16
B. C
C. V = a 3 3 24
D. V = a 3 3 8
Cho hình chóp S.BCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; A D = 3 B C = 3 a ; A B = a ; S A = a 3 . Điểm I thỏa mãn A D → = 3 A I → . M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB , SC Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).




Bài 1: cho hình chóp S.ABCD có đáy ABCD là hình thang , BAD=ABC= 90 độ. Cạnh AB=BC=a, AD=2a, SA vuông góc ( ABCD ), Sa=2a. Gọi M,N lần lượt là trung điểm của SA và SD. Tính theo a thể tích khối chóp S.BCNM
Bài 2: cho hình chóp tứ giác đều S.ABCD có AB = a; SA = a\(\sqrt{2}\) . Gọi M,N lần lượt là trung điểm của SA,SB,SD. Tính theo a thể tích của khối tứ diện A.MNP
Cho hình chóp S . ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a 3 , SA ⊥ (ABCD), SC tạo với đáy một góc 450 . Gọi M là trung điểm của SB , N là điểm trên cạnh SC sao cho
SN = 1 2 NC . Tính thể tích khối chóp S . AMN
A. a 3 3 9
B. a 3 3 18
C. a 3 3 12
D. a 3 3 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3. Mặt phẳng α qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP



