a: ta có:ABCD là hình bình hành
=>AB//CD và AB=CD
Ta có: AB//CD
C\(\in\)DE
Do đó: AB//CE
Ta có: AB=CD
CD=CE
Do đó: AB=CE
Xét tứ giác ABEC có
AB//EC
AB=EC
Do đó: ABEC là hình bình hành
b: Ta có: ABCD là hình chữ nhật
=>AC=BD và AC cắt BD tại trung điểm của mỗi đường
=>M là trung điểm chung của BD và AC
Ta có: BD=AC
AC=BE(ABEC là hình bình hành)
Do đó: BD=BE
=>\(\widehat{BDE}=\widehat{BED}\)
Xét ΔBDE có
M,N lần lượt là trung điểm của BD,BE
=>MN là đường trung bình của ΔBDE
=>MN//DE và MN=1/2DE
Xét tứ giác DMNE có MN//DE
nên DMNE là hình thang
Hình thang DMNE có \(\widehat{MDE}=\widehat{NED}\)
nên DMNE là hình thang cân
c: Ta có: MN//DE
BC\(\perp\)DE tại C
Do đó:BC\(\perp\)MN
Xét ΔBDE có
C,M lần lượt là trung điểm của DE,DB
=>CM là đường trung bình của ΔBDE
=>CM//BE và CM=BE/2
Ta có: CM//BE
N\(\in\)BE
Do đó: CM//BN
Ta có: CM=BE/2
BN=BE/2
Do đó: CM=BN
Xét tứ giác BMCN có
CM//BN
CM=BN
Do đó: BMCN là hình bình hành
Hình bình hành BMCN có BC\(\perp\)MN
nên BMCN là hình thoi
d: F đối xứng E qua B
=>B là trung điểmcủa FE
Xét ΔFDE có
DB là đường trung tuyến
DB=FE/2
Do đó: ΔFDE vuông tại D
=>FD\(\perp\)DE
mà AD\(\perp\)DE
và FD,AD có điểm chung là D
nên F,A,D thẳng hàng
Xét ΔFDE có
B là trung điểm của FE
BA//DE
Do đó: A là trung điểm của FD
Ta có: BA\(\perp\)FD tại A
A là trung điểm của FD
Do đó: BA là đường trung trực của FD
=>F đối xứng D qua AB