Để M bé nhất => \(|x-5|\)bé nhất.
\(\Rightarrow|x-5|=0\Rightarrow x-5=0\Rightarrow x=5\)
Thay x vào M, ta có:
\(M=|x-2|+|x-3|+|x-4|+|x-5|\)
\(\Rightarrow M=|5-2|+|5-3|+|5-4|+|5-5|\)
\(\Rightarrow M=3+2+1+0=6\)
Vậy M có giá trị nhỏ nhất = 6 khi x = 5.
\(\left|x-2\right|+\left|x-5\right|=\left|-x+2\right|+\left|x-5\right|\ge\left|-x+2+x-5\right|=3\)(1)
\(\left|x-3\right|+\left|x-4\right|=\left|-x+3\right|+\left|x-4\right|\ge\left|-x+3+x-4\right|=1\)(2)
\(M\ge3+1=4\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(-x+2\right).\left(x-5\right)\ge0\\\left(-x+3\right).\left(x-4\right)\ge0\end{cases}\Leftrightarrow3\le x\le4}\)
Vậy...