a: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)MB tại E
Xét tứ giác MCAE có \(\widehat{MCA}+\widehat{MEA}=90^0+90^0=180^0\)
nên MCAE là tứ giác nội tiếp
b: Xét (O) có
ΔBFA nội tiếp
BA là đường kính
Do đó: ΔBFA vuông tại F
Xét ΔBEA vuông tại E và ΔBCM vuông tại C có
\(\widehat{EBA}\) chung
Do đó: ΔBEA~ΔBCM
=>\(\dfrac{BE}{BC}=\dfrac{BA}{BM}\)
=>\(BE\cdot BM=BA\cdot BC\left(1\right)\)
Xét ΔBFA vuông tại F và ΔBCN vuông tại C có
\(\widehat{FBA}\) chung
Do đó: ΔBFA~ΔBCN
=>\(\dfrac{BF}{BC}=\dfrac{BA}{BN}\)
=>\(BF\cdot BN=BA\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BE\cdot BM=BF\cdot BN\)