cm voi moi so duong a b c thi
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\left(1+\sqrt{2}+\sqrt{3}\right)\left(\frac{1}{a+\sqrt{2b}+\sqrt{3a}}+\frac{1}{b+\sqrt{2c}+\sqrt{3a}}+\frac{1}{c+\sqrt{2a}+\sqrt{3b}}\right)\)
M=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1},\)voi a>0 va a#1
a)Rút gọn biểu thức M
b)so sánh giá trị của m với 1
Giúp mk với mk giúp lại cho
Cho n thuộc N*
Cminh \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
CMR: \(\frac{1}{2\sqrt[3]{1}}+\frac{1}{3\sqrt[3]{2}}+\frac{1}{4\sqrt[3]{3}}+...+\frac{1}{\left(n+1\right)\sqrt[3]{n}}\) với mọi \(n\varepsilonℕ^∗\)
CMR : với mọi số tự nhiên n > 1, ta có :
a) \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)
b) \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
\(\left(1+\frac{1}{\sqrt{1}}\right)\left(1+\frac{1}{\sqrt{2}}\right)\left(1+\frac{1}{\sqrt{3}}\right)...\left(1+\frac{1}{\sqrt{n}}\right)\)
Biểu thức này có công thức ntn ạ
cho biểu thức:
A= \(\frac{x+4\sqrt{x}-2}{x+\sqrt{x}-2}\) - \(\frac{\sqrt{x}+1}{\sqrt{x}+2}\)- \(\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}\right)\)
a) Rút gọn A
b) Tìm giá trị của m để phương trình sau chỉ có 1 nghiệm A= 3 + \(m\sqrt{x}\)
Chứng minh rằng với mọi số nguyên dương n ta có :
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Chứng minh=phương pháp quy nạp
Chứng minh \(\sqrt{n}< 1+\frac{1}{\sqrt{2}}+.......+\frac{1}{\sqrt{n}}< 2.\sqrt{n}\) \(\left(n\in N,n>1\right)\)