Hãy xác định trọng tâm của một bản phẳng mỏng, đồng chất, hình chữ nhật, dài 12 cm, rộng 6 cm, bị cắt mất một phần hình vuông có cạnh 3 cm ở một góc (Hình vẽ).
Chọn đáp án đúng.
A. Trọng tâm G của bản phẳng nằm trên đoạn O 1 O 2 cách O 1 một đoạn 0,88 cm.
B. Trọng tâm G của bản phẳng nằm trên đoạn AE cách O 1 một đoạn 0,88 cm.
C. Trọng tâm G của bản phẳng nằm trên đoạn BD cách O 1 một đoạn 0,55 cm.
D. Trọng tâm G của bản phẳng nằm trên đoạn O 1 D cách O 1 một đoạn 0,55 cm.
Chọn A.
Bản phẳng coi như gồm hai bản AHEF và HBCD ghép lại.
Biểu diễn trọng tâm các bản như hình vẽ sau:
Vì các bản đồng chất, phẳng mỏng đều nên tỉ lệ diện tích bằng tỉ lệ về trọng lượng:
Gọi G là trọng tâm của cả bản phẳng => G phải nằm trền đoạn thẳng O1O2, trong đó O1 là trọng tâm của bản AHEF, O2 là trọng tâm của bản HBCD.
Ta có:
Xét tam giác vuông O1O2K ta có:
Giải hệ (1) và (2) ta được: GG1 0,88 cm
Vậy trọng tâm G của bản phẳng nằm trên đoạn O1O2 cách O1 một đoạn 0,88 cm.