a, \(\left(3^3\right)^{11}=3^{33}< 81^8=\left(3^4\right)^8=3^{32}\)
b,\(625^5=\left(5^4\right)^5=5^{20}< 125^7=\left(5^3\right)^7=5^{21}\) \(\)
c, \(5^{36}=\left(5^3\right)^{12}=125^{12}>11^{24}=\left(11^2\right)^{12}=121^{12}\)
a) Ta có: \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
Vậy \(27^{11}>81^8\)
b) Ta có: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
Vậy \(625^5< 125^7\)
c) Ta có: \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì: \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
Vậy \(5^{36}>11^{24}\)