Đặt A = 1/ 2^2 + 1/3^2 + 1/4^2 + ... + 1/2025^2
A < 1/1 * 2 + 1/2 * 3 + 1/3 * 4 + ... + 1/2024 * 2025
A < 1/1 - 1/2 + 1/2- 1/3 + 1/3 - 1/4 + ...+ 1/2024 - 1/2025
A < 1- 1 / 202
=> A < 1
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}\)
Đặt `A = 1/(2^2) + 1/(3^2) + 1/(4^2) + ... + 1/(2025^2)`
Ta có : `1/(2^2) <1/(1*2)`
`1/(3^2) < 1/(2*3)`
`...........`
`1/(2025^2) < 1/(2024 *2025)`
`=> 1/(2^2) +1/(3^2) + ... + 1/(2025^2) < 1/(1*2) + 1/(2*3)+ ... + 1/(2024*2025)`
`=> A < 1/(1*2) + 1/(2*3)+ ... + 1/(2024*2025)`
`=> A< 1/1 - 1/2 + 1/2 -1/3 + ... +1/2024 - 1/2025`
`=> A < 1 - 1/2025`
`=> A <1 ` (VÌ `1 - 1/2025 <1`)
Vậy `A<1`