Ta có: ( 2n + 1 ; 3n + 1 ) = ( 2n + 1 ; 3n + 1 - 2n - 1 ) = ( 2n + 1; n ) = ( n ; n + 1 ) = ( n ; 1 ) = 1
=> 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
Ta có: ( 2n + 1 ; 3n + 1 ) = ( 2n + 1 ; 3n + 1 - 2n - 1 ) = ( 2n + 1; n ) = ( n ; n + 1 ) = ( n ; 1 ) = 1
=> 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
Chứng minh rằng 2n+ 1 và 3n + 1 là hai số nguyên tố cùng nhau ( với n thuộc N )
Chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau(với n \(\notin N\)
chứng minh rằng: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. ( với n thuộc N
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Chứng minh rằng : Với mỗi neN thì các số sau là 2 số nguyên tố cùng nhau
a) 3n + 1 va 4n + 1
) 2n + 5 va 3n + 7
chứng minh rằng 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau