Đáp án A.
Hàm số xác định trên ℝ ⇒ x 2 − 2 x + m > 0 ∀ x ∈ ℝ
⇔ Δ ' < 0 a > 0 ⇔ 1 2 − m < 0 1 > 0 ⇔ m > 1
Đáp án A.
Hàm số xác định trên ℝ ⇒ x 2 − 2 x + m > 0 ∀ x ∈ ℝ
⇔ Δ ' < 0 a > 0 ⇔ 1 2 − m < 0 1 > 0 ⇔ m > 1
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Cho hàm số y=f(x) có đạo hàm xác định trên tập R / - 1 và đồ thị hàm số y=f(x) như hình vẽ. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số y=f(sin2x) trên 0 ; π 2 . Tính P=m.M
A. P=0
B. P=8
C. P=12
D. P=4
Cho các phát biểu sau
(1) Đơn giản biểu thức M = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 2 + b 1 2 ta được M = a - b
(2) Tập xác định D của hàm số y = log 2 ln 2 x - 1 là D = e ; + ∞
(3) Đạo hàm của hàm số y = log 2 ln x là y ' = 1 x ln x . ln 2
(4) Hàm số y = 10 log a x - 1 có đạo hàm tại mọi điểm thuộc tập xác định
Số các phát biểu đúng là
A. 6
B. 1
C. 3
D. 4
Cho hàm số y=f(x) xác định trên R / 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau
Tìm tập hợp các giá trị của tham số m để phương trình 2f(x)-m=0 có hai nghiệm.
A. ( - ∞ ; - 2 ) ∪ ( 6 ; + ∞ )
B. ( - ∞ ; - 6 ) ∪ ( - 2 ; + ∞ )
C. ( 2 ; 6 )
D. ( - 6 ; - 2 )
Cho hàm số y = mx 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ 1 ; + ∞ .
A. m < 14 5 .
B. m < - 3 .
C. m < 3 .
D. m < - 14 5
Cho hàm số y = mx 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ 1 ; + ∞
A. m < 14 5
B. m < - 14 5
C. m < 3
D. m < - 3
Cho hàm số y = mx 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ 1 ; + ∞
A. m < 14 5
B. m < - 14 5
C. m < 3
D. m < - 3
Cho hàm số y = m x 2 + 6 x - 2 x + 2 . Xác định m để hàm số có y ' ≤ 0 , ∀ x ∈ ( 1 ; + ∞ ) .
A. m < 14 5
B. m < 3
C. m < - 14 5
D. m < -3
Cho hàm số y = log 2 x 2 - 3 x + m - 1 . Tìm m để hàm số có tập xác định D = R.
A. m ≤ 9 4
B. m ≤ 17 4
C. m ≥ 17 4
D. m ≥ 9 4