Trong bốn hàm số: 1 y = cos 2 x ; 2 y = sin x ; 3 y = tan 2 x ; 4 y = cot 4 x có mấy hàm số tuần hoàn với chu kì là π ?
A.3
B.2
C.0
D.1
Cho hàm số y = sin2 x+2 sinx, với x∈ [ - π ; π ] . Hàm số này có mấy điểm cực trị
A. Bốn.
B. Một.
C. Ba.
D. Hai.
Trong các hàm số sau hàm số nào tuần hoàn với chu kỳ π ?
A. y = sin 2 x
B. y = tan 2 x
C. y = cos x
D. y = c o t x 2
Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn [0;π], các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và CD = 2 π /3. Độ dài của cạnh BC bằng
A. 2 2
B. 1 2
C. 1
D. 3 2
Cho hàm số f ( x ) = 1 + c o s x ( x - π ) 2 k h i x ≠ π m k h i x = π Tìm m để f(x) liên tục tại x = π
A. m = 1 4
B. m = - 1 4
C. m = 1 2
D. m = - 1 2
Tìm chu kì của hàm số y = sin ( 3 x + π / 4 )
A. T= π
B. T=2 π
C. T= π /2
D. T=2 π /3
Tìm góc α ∈ {π/6;π/4;π/3;π/2} để phương trình cos2x+ 3 sin2x-2cosx= 0 tương đương với phương trình c o s ( 2 x - α ) = cos x
A. α = π / 6
B. α = π / 4
C. α = π / 2
D. α = π / 3
Cho các mệnh đề sau
(I) Hàm số f x = sin x x 2 + 1 là hàm số chẵn.
(II) Hàm số f x = 3 sin x + 4 cos x có giá trị lớn nhất là 5.
(III) Hàm số f x = tan x tuần hoàn với chu kì 2 π .
(IV) Hàm số f x = cos x đồng biến trên khoảng 0 ; π .
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?
A. 4.
B. 2.
C. 3.
D. 1.
Có tất cả bao nhiêu giá trị nguyên của tham số m Î [-20;20] để hàm số y = 8 c o t x + m - 3 . 2 c o t x + 3 m - 2 đồng biến trên khoảng (π/4;π)?
A. 10
B. 12
C. 11
D. 9
Cho hàm số y=f(x) xác định trên [0;π/2] thỏa mãn ∫ 0 π 2 f 2 x - 2 2 x sin x - π 4 d x = 2 - π 2 Tích phân ∫ 0 π 2 f x d x bằng
A.π/4
B. 0
C. 1
D. π/2