Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M. Đường thẳng vuông góc với OA tại O cắt MB tại C. Chứng minh CM = CO
Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M. Đường thẳng vuông góc với OA tại O cắt MB tại C. Chứng minh CM=CO.
Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M. Đường thẳng vuông góc với OA tại O cắt MB tại C . Chứng minh rằng
a, góc COM = góc OMA
b, CM=CO
Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại I. Đường thẳng qua I và vuông góc vói IA cắt OB tại K. Đường thẳng qua O, vuông góc vói OA cắt IB ở C
a, Chứng minh KC và OI vuông góc nhau
b, Biết OA = OB = 9 cm, OI = 15 cm, tính IA và IK
Cho đường tròn tâm O, bán kính OA=6 cm. Gọi H là trung điểm của OA, đường thẳng vuông góc với OA tại H cắt đường tròn(O)tại B và C . Kẻ tiếp tuyến đường tròn (O) tại B cắt đường thẳng OA tại M
Tính độ dài MB Tứ giác OBAC là hình gì ? vì sao?chứng minh MC là tiếp tuyến của đường tròn(O)
Cho đường tròn tâm O, bán kính OA=6cm. Gọi H là trung điểm của OA, đường thẳng vuông góc với OA tại H cắt đường tròn (O) tại B và C. Kẻ tiếp tuyến với đường tròn (O) tại B cắt đường thẳng OA tại m
a, Tính độ dài MB
b, Tứ giác OBAC là hình gì? Vì sao?
c, Chứng minh MC là tiếp tuyến của (O)
Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400
a) Tính góc AOB
b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân
Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D
a) chứng minh : Tam giác COD là tam giác vuông
b)Chứng minh : MC.MD=OM2
c) Cho biết OC=BA=2R, tính AC và BD theo R
Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N
a)Đường thẳng CM cắt (O') tại P Chứng minh : OM////BP
b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Cho đường tròn (O;R) và 1 điểm M cách O một khoảng bằng 2R. Vẽ các tiếp tuyến MA; MB với đường tròn tâm O (B; A là các tiếp điểm).
a, Chứng minh rằng: Góc AMO = 300 và tính AM theo R
b, Chứng minh tam giác ABM đều và tính chu vi tam giác ABM theo R
c, Đường thẳng vuông góc với OB tại O cắt AM tại D. Đường thẳng vuông góc với OA tại O cắt MB tại E. Chứng minh rằng Tứ giác MDOE là hình thoi
d, Chứng minh đường thẳng DE là tiếp tuyến của (O;R)