|x+3/5| >0
|-2/3-y|>0
=.|x+3/5|+|-2/3-y|>0
mà |x+3/5|+|-2/3-y|=0(theo đề)
=>|x+3/5|=|-2/3-y|=0
=>x=-3/5 và y=-2/3
tick nhé
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
|x+3/5| >0
|-2/3-y|>0
=.|x+3/5|+|-2/3-y|>0
mà |x+3/5|+|-2/3-y|=0(theo đề)
=>|x+3/5|=|-2/3-y|=0
=>x=-3/5 và y=-2/3
tick nhé
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Tìm x,y,z \(\inℚ\)thỏa mãn \(\left(x-\frac{1}{3}\right)\cdot\left(y-\frac{1}{2}\right)\cdot\left(z-5\right)=0\)và x+2=y+1=z+3
1. Tìm các số a,b,c không âm thỏa mãn a+3c=8;a+2b=9 và tổng a+b+c có giá trị lớn nhất
2. Cho 3 số x,y,z khác 0 và x+y+z \(\ne\)0 thỏa mãn điều kiện:
\(\frac{\left(y+z-2x\right)}{x}=\frac{\left(z+x-2y\right)}{y}=\frac{\left(x+y-2z\right)}{z}\). Hãy chứng tỏ A = \(\left[1+\frac{x}{y}\right].\left[1+\frac{y}{z}\right].\left[1+\frac{z}{x}\right]\)là một số tự nhiên
Nhanh nha! Cảm ơn
Cho a, b, c, x, y, z > 0 thỏa mãn: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). Tính A = \(\frac{\left(x^3+y^3+z^3\right).\left(a^3+b^3+c^3\right).\left(a+b+c\right)}{\left(x+y+z\right).\left(a^2.x+b^2.y+c^2.z\right)}\)
Số giá trị hữu tỉ X của thỏa mãn :\(X^2\left(\frac{2}{3}-5X\right)=0\) LÀ?
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Số giá trị hữu tỉ của x thỏa mãn \(^{x^2\left(\frac{2}{3}\text{-}5x\right)=0}\) là
Giá trị bé nhất của \(\left|x^2+3\right|+\left|y^2+6\right|=12,5\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Cho 3 số x;y;z khác 0 thỏa mãn\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)Hãy tính gt của bt B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)