Hai gương phẳng hợp với nhau một góc a , mặt phản xạ quay vào nhau. khoảng giữa hai gương có một điểm sáng S. (Hình vẽ).
a. Hãy trình bày cách vẽ đường đi của tia sáng phát ra từ S đến gương 1, phản xạ lần lượt trên hai gương và tia phan xạ ra khỏi gương 2 đi qua S.
b. Biết a < 180o180o . Chứng tỏ rằng góc hợp bởi tia tới ban đầu và tia phản xạ ra khỏi gương 2 không phụ thuộc góc tới mà chỉ phụ thuộc góc hợp bởi hai gương.
Cách vẽ:
Gọi: S' là ảnh của S qua gương 1.
\(\Rightarrow\) Tia tới qua gương 1 tạo ra tia phản xạ đi qua S'.
Gọi: S'' là ảnh của S qua gương 2.
\(\Rightarrow\) Tia tới khi qua gương 2 cho tia phản tạo ta tia phản xạ đi qua S
\(\Rightarrow\) Tia tới sẽ đi qua S''.
Giả sử S', S'' cắt G tại A và G' tại B.
\(\Rightarrow\) SABS là đường truyền tia sáng cần vẽ.
Chứng minh:
Ta có: \(\left\{{}\begin{matrix}\widehat{SAG}=\widehat{OAB}\\\widehat{OBA}=\widehat{SBG'}\end{matrix}\right.\)
\(\widehat{ASB}+\widehat{SAB}+\widehat{SBA}=90^0\)
\(\widehat{SAB}+2\widehat{OAB}=180^0\) \(\Rightarrow\widehat{SAB}=180^0-2\widehat{0AB}\)
\(\widehat{SBA}+2\widehat{OAB}=180^0\Rightarrow\widehat{SBA}=180^0-2\widehat{OAB}\)
\(\Rightarrow\widehat{ASB}+180^0-2\widehat{0AB}+180^0-2\widehat{OBA}=180^0\)
\(\Leftrightarrow\widehat{ASB}+2\left(180^0-\widehat{0AB}-\widehat{0BA}\right)=180^0\)
\(\Leftrightarrow\widehat{ASB}+2\alpha=180^0\)
\(\Rightarrow\widehat{ASB}=180^0-2\alpha\)
Vậy \(\widehat{ASB}\) không phụ thuộc vào góc tới mà phụ thuộc vào góc hợp bởi 2 gương (đpcm).