Hình gồm hai đường tròn có tâm và bán kính khác nhau có bao nhiêu trục đối xứng?
A.Không có
B.Một
C.Hai
D.Vô số
1. Cho hai đường trong (C1) và (C2) lần lượt có tâm O1, O2 và đều có bán kính R. Chứng minh rằng (C2) là ảnh của đường tròn (C1) qua phép đối xứng trục d, với d là đường trung trực của O1O2.
2. Cho hai điểm A và B nằm cùng phía của đường thẳng d. Hãy dựng điểm M trên d sao cho AM + BM bé nhất.
Cho đường tròn (C), tâm O, có bán kính 4, phép vị tự tâm O tỉ số k= –2 biến (C) thành (C’) có bán kính bằng bao nhiêu:
A. 2
B. 4
C.8
D. 16
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3;-2), bán kính 3.
a. Viết phương trình của đường tròn đó.
b. Viết phương trình ảnh của đường tròn (I;3) qua phép tịnh tiến theo vectơ v=(-2 ;1).
c. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng trục Ox.
d. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng qua gốc tọa độ
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(1;-3), bán kính 2. Viết phương trình ảnh của đường tròn (I;2) qua phép đồng dạng có đưuọc từ việc thực hiện liên tiếp phép vị tự tâm O tỉ số 3 và phép đối xứng qua trục Ox.
Cho hai điểm phân biệt A, B và đường thẳng d. Hãy tìm một phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự.
a. Biến A thành chính nó;
b. Biến A thành B;
c. Biến d thành chính nó.
Hình có hai đường thẳng a và b song song với nhau thì có bao nhiêu phép đối xứng tâm biến a thành b?
A. Một
B. Hai
C. Ba
D. Vô số
Cho hai đường thẳng phân biệt a và b cùng song song với mp (P). Có bao nhiêu vị trí tương đối của a và b?
A. 1
B. 2
C. 3
D. 4