1) a) Tính giá trị của biểu thức \(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{3}\)
b) Tìm các giá trị của tham số m để hai đường thẳng (d):y=(m+2).x-m (m≠-2) và (d'):y = -2x-2m+1 cắt nhau.
c) Tìm hệ số góc của đường thẳng (d):y=(2m-3)x+m ( với m≠\(\dfrac{3}{2}\)) biết (d) đi qua điểm A (3;-1)
Cho hai đường thẳng y=(m 1)x-3 và y=(2m-1)x 4 a) Chứng minh rằng khi m= -1/2 thì hai đường thẳng đã cho vuông góc với nhau b) Tìm tất cả các giá trị của m để hai đường thẳng đã cho vuông góc với nhau
cho hai đường thẳng: y = (m +1)x - 3 và y = (2m - 1)x + 4
a. chứng minh rằng khi m = -1/2 thì hai đường thẳng đã cho vuông góc với nhau
b. tìm tất cả các giá trị của m để hai đường thẳng đã cho vuông góc với nhau
Câu 1. Giá trị của x thỏa mãn \(\sqrt{2x}=6\) là
A. x=3 B. x=18 C. x=6 D. x =1
Câu 2. Giá trị của tham số m để hai đường thẳng \(y=\left(m-1\right)x+2\) (m ≠ 1) và y = 3x -1 cắt nhau là
A. m = -4 B. m ≠ -4 C. m = 4 D. m ≠ 4
Câu 3. Cho hai đường thẳng \(y=12x+5-m\) và \(y=3x+3+m\). Để hai đường thẳng này cắt nhau tại một điểm trên trục tung thì giá trị của m là
A. m = -1 B. m = -3 C. m = 1 D. m = 5
Cho hai đường thẳng (d1 ) : y = (m +1)x + m+3 và (d2 ) : y= (2m+1)x-m+3 với m khác 0. Tìm tất cả các giá trị m (m khác 0) để (d1) và (d1) cắt nhau tại điểm M sao cho M nằm trên đường thẳng (d): y=x
Câu 2. [VDT] Với giá trị nào của m thì 2 đường thẳng y = (2+m)x + 1 và y = 2x + m cắt nhau tại một điểm có hoành độ bằng –2
A. m = 4. B. m = . C. . D. m = .
Câu 3. [VDT] Xác định giá trị của m để đường thẳng y = (m – 3)x + 2 đi qua giao điểm của 2 đường thẳng: y = 3x +1 và y = – x – 3. Kết quả
A. m=3. B. m = – 3 . C. m = 7 . D. m = 5.
Câu 4. [VDT] Một máy bay bay với vận tốc 170m/s lên cao
theo phương tạo với đường băng một góc 400. Hỏi sau 6 phút,
máy bay ở độ cao bao nhiêu mét so với mặt đất?
(kết quả làm tròn đến hàng đơn vị)
A. 39340 m. B. 39341 m.
C. 39338 m. D. 39339 m.
Câu 5. [TH] Cho đường tròn (O) có bán kính OA = R. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Độ dài dây BC bằng
A. R . B. . C. R . D. .
Câu 6. [VDT] Cho đường tròn (O) có bán kính R = 10cm ngoại tiếp tam giác đều ABC. Độ dài cạnh của tam giác đều bằng
A. 5 cm. B. cm. C. cm. D. 5cm.
Câu 7. [VDT] Cho đường tròn (O; 6cm) và dây AB = 8 cm. Đường thẳng qua O vuông góc với AB và cắt tiếp tuyến của đường tròn (O) tại A ở điểm C. Độ dài OC bằng
A. 15cm. B. 18 cm. C. 20 cm. D. 22 cm.
Câu 8. [VDT] Cho hai đường tròn (O; 8cm) và (O/; 5cm) tiếp xúc ngoài tại M. Gọi AB là tiếp tuyến chung của hai đường tròn (A (O); B (O/)). Tính độ dài AB (kết quả làm tròn đến chữ số thập phân thứ hai).
A. 8.75 cm. B. 10,85 cm. C. 12,65 cm. D. 14,08 cm.
Câu 9. [VDC] Cho hai đường tròn bằng nhau (O; R) và (O/; R) cắt nhau tại A và B sao cho tâm đường tròn này nằm trên đường tròn kia. Tính theo R diện tích tứ giác OAO/B
A. . B. . C. . D. .
Câu 10. [VDC] Cho tam giác đều ABC có cạnh bằng 7 cm.
Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính
đường tròn nội tiếp tam giác ABC (như hình vẽ). Tổng R + r bằng
A. cm. B. cm.
C. cm. D. cm.
Câu 11. [VDC] Cho hai đường tròn (O; 10cm) và (O/; 6cm) tiếp xúc ngoài tại M. Gọi AB là tiếp tuyến chung của hai đường tròn (A (O); B (O/)). Đường thẳng AB cắt đường thẳng OO/ tại C. Độ dài O/C bằng
A. 16cm. B. 24 cm. C. 28 cm. D. 34 cm.
Câu 12. [VDC] Cho tam giác ABC có đường tròn nội tiếp tiếp xúc với AB, BC, CA theo thứ tự tại M, N, P; Biết BC = a và chu vi tam giác ABC bằng p. Tính AM theo a và p.
A. AM = p + a. B. AM = p -2a.
C. AM = 2p – a. D. AM = – a.
Bài 1 : Cho hai hàm số bậc nhất y = 3mx + 2 và y = (2m + 1)x + 3. Tìm giá trị của m để
đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng cắt nhau
b) Hai đường thẳng song song.
Bài 2 : Cho hai hàm số bậc nhất (d1): y = 3mx + 4 – m2
và (d2): y = (2m + 1)x + 3. Tìm
giá trị của m để đồ thị của hai hàm số đó:
a) Cắt nhau. b) Trùng nhau
b) Song song với nhau d) Vuông góc với nhau.
Cho hai đường thẳng có phương trình
y=(m+5)x-2m+3(m≠-5) (1)
y=(2m+1)x+3m(m≠ -1/2) (2)
Tìm các giá trị của m sao cho:
Hai đường thẳng cắt nhau
Hai đường thẳng song song với nhau
Hai đường thẳng trùng nhau
Trong mặt phẳng Oxy,đường thẳng (d) có phương trình:(m-4)x+(m-3)y=1(m là tham số) .Khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất khi giá trị m bằng
A.1 B.\(\dfrac{1}{3}\) C.\(\dfrac{7}{2}\) D.\(\dfrac{5}{2}\)