Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngu Người

GPT:\(\sqrt{x^2+8}+3x-2=\sqrt{x^2+15}\)

Trịnh Quang Hùng
12 tháng 9 2015 lúc 21:27

Đây là phương pháp trừ để hỏng, phương pháp rất đơn giản như sau:

B1: Thử các gt đầu 1;-1;2;-2;3;-3;...... xác định giá trị VT,VP khi ở nghiệm x

B2:GPT

Bài làm 

Thử vào PT ta thấy x=1 là nghiêm pt và VT=VP=4

có đẳng thức sau: \(\sqrt{a}-\sqrt{b}=\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

Trừ cả hai vế PT cho 4 ta có: \(\left(\sqrt{x^2+8}\right)+3x-2-4=\left(\sqrt{x^2+15}\right)-4\)

\(\left(\sqrt{x^2+8}\right)-\sqrt{9}+\left(3x-3\right)=\left(\sqrt{x^2+15}\right)-\sqrt{16}\)

\(\frac{\left(x^2+8-9\right)}{\sqrt{x^2+8}+3}+3\left(x-1\right)=\frac{x^2+15-16}{\left(\sqrt{x^2+15}\right)+4}\)

\(\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}+3\left(x-1\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(\sqrt{x^2+15}\right)+4}\)

\(\left(x-1\right)\left(\frac{\left(x+1\right)}{\sqrt{x^2+8}+3}+3-\frac{\left(x+1\right)}{\left(\sqrt{x^2+15}\right)+4}\right)=0\)

Giải tiếp ta có x=1 hoặc cái trong ngoặc kia sẽ có nghiêm hoặc vô nghiêm gì đó

 

 

 

 


Các câu hỏi tương tự
cherry moon
Xem chi tiết
Oia Oia
Xem chi tiết
Tho Nguyễn Văn
Xem chi tiết
Trần Đức Thắng
Xem chi tiết
Ngô Văn Tuyên
Xem chi tiết
Dang The Cong
Xem chi tiết
Nguyễn
Xem chi tiết
Anh Hanny
Xem chi tiết
Thị Thu Thúy Lê
Xem chi tiết