Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tho Nguyễn Văn

GPT :

\(3\sqrt{x^3+8}=2x^2-3x+10\)

Trần Tuấn Hoàng
30 tháng 12 2022 lúc 20:46

Làm cách kia cx đc, nhưng làm vậy ko thông minh lắm.

\(Đk:x\ge-2\)

\(3\sqrt{x^3+8}=2x^2-3x+10\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\)

Ta đặt \(\left\{{}\begin{matrix}u=\sqrt{x+2}\left(u\ge0\right)\\v=\sqrt{x^2-2x+4}\left(v\ge2\sqrt{3}\right)\end{matrix}\right.\)

Khi đó phương trình trở thành:

\(3uv=2v^2+u^2\)

\(\Leftrightarrow2v^2-3uv+u^2=0\)

\(\Leftrightarrow2v^2-2uv-uv+u^2=0\)

\(\Leftrightarrow2v\left(v-u\right)-u\left(v-u\right)=0\)

\(\Leftrightarrow\left(v-u\right)\left(2v-u\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}v=u\\2v=u\end{matrix}\right.\)

Với \(v=u\Rightarrow\sqrt{x^2-2x+4}=\sqrt{x+2}\)

\(\Rightarrow x^2-2x+4=x+2\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Với \(2v=u\Rightarrow2\sqrt{x^2-2x+4}=\sqrt{x+2}\)

\(\Rightarrow4\left(x^2-2x+4\right)=x+2\)

\(\Leftrightarrow4x^2-8x+16=x+2\)

\(\Leftrightarrow4x^2-9x+14=0\)

\(\Delta=\left(-9\right)^2-4.4.14=-143< 0\)

\(\Rightarrow\)Phương trình vô nghiệm.

Vậy phương trình đã cho có tập nghiệm \(S=\left\{1;2\right\}\)

 

Miracle
30 tháng 12 2022 lúc 21:08

\(3\sqrt{x^3+8}=2x^2-3x+10\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\left(1\right)\)

\(\Leftrightarrow9\left(x+2\right)\left(x^2-2x+4\right)=\left(2x^2-3x+10\right)^2\)

\(\Leftrightarrow9\left(x^3-2x^2+4x+2x^2-4x+8\right)=4x^4-6x^3+9x^2-30x+20x^2-30x+100\)

\(\Leftrightarrow9x^3-18x^2+36x+18x^2-36x+72-4x^4+6x^3-20x^2+6x^3-9x^2+30x-20x^2+30x-100=0\)

\(\Leftrightarrow-4x^4+21x^3-49x^2+60x-28=0\left(2\right)\)

Nhận thấy, \(x=1\) và \(x=2\) là nghiệm của phương trình \(\left(2\right)\)

\(\left(2\right)\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(-4x^2+9x-14\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\-4x^2+9x-14=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\\left(x-\dfrac{9}{8}\right)^2=-\dfrac{143}{16}\left(\text{vô lí}\right)\end{matrix}\right.\)

Thử lại nghiệm \(x=1;x=2\) vào phương trình \(\left(1\right)\) thấy nghiệm \(x=2\) thỏa mãn.


Các câu hỏi tương tự
Trần Đức Thắng
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
danhdanhdanh
Xem chi tiết
Nhóc Cô Đơn
Xem chi tiết
cherry moon
Xem chi tiết
Nguyễn An
Xem chi tiết
Ngu Người
Xem chi tiết
Ngô Văn Tuyên
Xem chi tiết
Đỗ Ngọc Đức Thông
Xem chi tiết