Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dieubuonnhat

Gpt: \(\sqrt{12-x}+\sqrt[3]{24+x}=6\)

Ngô Văn Phương
12 tháng 5 2017 lúc 16:10

Đặt a = \(\sqrt{12-x}\), b = \(\sqrt[3]{24+x}\), ta có:

a + b = 6 => a = 6 - b , (a+b)2 = 36 (1)

Có a2 + b3 = 12 - x + 24 + x = 36 (2)

(1), (2) suy ra (a+b)2 = a2 + b3

<=> a2 + 2ab + b2 = a2 + b3

<=> 2ab + b2 = b3

<=> b3 - b2 - 2ab = 0

<=> b(b2 - b - 2a)=0

Thay a = 6 - b , pt trở thành:

b(b2 - b - 2*6 + 2b) = 0

<=> b(b2 + b - 12) = 0

<=> b(b2 + 4b - 3b -12) = 0

<=> b(b - 3)(b + 4) = 0

<=> b = 0 => x = -24

       b = 3 => x = 3

       b = -4 => x = -88

Vậy S = {-88;-24;3}

anhduc1501
12 tháng 5 2017 lúc 16:14

ĐK: \(12-x\ge0\Rightarrow x\le12\)

đặt

\(\hept{\begin{cases}u=\sqrt{12-x}\\v=\sqrt[3]{24+x}\end{cases}}=>\hept{\begin{cases}u^2=12-x\\v^3=24+x\end{cases}}=>\hept{\begin{cases}u^2+v^3=36\left(1\right)\\u+v=6\left(2\right)\end{cases}}\)

từ (2) ta có: \(u=6-v\) thay vào (1) được: \(\left(6-v\right)^2+v^3=36\Leftrightarrow v^3+v^2-12v=0\)

\(\Leftrightarrow v\left(v^2+v-12\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}v=0\\v^2+v-12=0\end{cases}}\Leftrightarrow v=0;v=3;v=-4\)

với \(v=0\Rightarrow u=6\Rightarrow12-x=36\Rightarrow x=-24\)(TM)

với \(v=3\Rightarrow u=3\Rightarrow x=3\left(TM\right)\)

với \(v=-4\Rightarrow u=10\Rightarrow x=-88\left(TM\right)\)

vậy tập nghiệm của PT là S={-24,3,-88}


Các câu hỏi tương tự
zoombie hahaha
Xem chi tiết
Nguyễn Phú Bình
Xem chi tiết
Hoàng Bảo Trân
Xem chi tiết
Vân Bùi
Xem chi tiết
Xuân Trà
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
Hoàng Thị Ngọc Trúc
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Vy Thảo
Xem chi tiết