đặt t = x + 1. Phương trình có dạng:
(6t + 1)2.t .(3t +1) = 6
<=> (36t2 + 12t + 1).(3t2 + t) = 6
<=> [12.(3t2 + t) + 1](3t2 + 1) = 6
<=> 12.(3t2 +1)2 + (3t2 +1) - 6 = 0
<=> 12.(3t2 +1)2 + 9(3t2 +1) - 8.(3t2 +t) - 6 = 0
<=> 3(3t2 + t). [4(3t2 +t) +3] - 2. [4(3t2 +t) +3] = 0
<=> [4(3t2 +t) +3]. [3(3t2 +t) - 2] = 0
<=> 4(3t2 +t) +3 = 0 hoặc 3(3t2 +t) - 2 = 0
+) 4(3t2 +t) +3 = 0 <=> 12t2 + 4t + 3 = 0 Vô nghiệm vì 12t2 + 4t + 3 = 8t2 + (2t +1)2 + 2 > 0 với mọi t
+) 3(3t2 +t) - 2 = 0 <=> 9t2 + 3t - 2 = 0 <=> 9t2 + 6t - 3t - 2 = 0 <=> (3t + 2)(3t -1) = 0
=> t = -2/3 hoặc t = 1/3
=> x + 1 = -2/3 hoặc x + 1 = 1/3
=> x = -5/3 hoặc x = -2/3