Cho số phức z = a + bi ( a , b ∈ ℕ ) thỏa mãn đồng thời hai điều kiện | z | = | z - 1 - i | và biểu thức A = | z - 2 + 2 i | + | z - 3 + i | đạt giá trị nhỏ nhất. Giá trị của biểu thức a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ - 1 - i và biểu thức A = z - 2 + 2 i + z - 3 + i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. -1
B. 2
C. -2
D. 1
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn |z-1-2i|= 3 . Khi biểu thức P = | z + 3 | 2 - | z - 2 i | 2 đạt giá trị lớn nhất. Giá trị của [ a b ] bằng
A. 14.
B. 13.
C. 7.
D. 8.
Gọi z 1 z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Giá trị của biểu thức z 1 + z 2 bằng
A. 2
B. 1
C. 4
D. 0
Cho số phức z=a+bi ( a , b ∈ R ) thoả mãn |z-3-3i|=6. Khi P=2|z+6-3i|+3|z+1+5i| đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. 2 - 2 5
B. 4 - 2 5
C. 2 5 - 2
D. 2 5 - 4
Cho 3 số phức z , z 1 , z 2 thỏa mãn z − 1 + 2 i = z + 3 − 4 i , z 1 + 5 − 2 i = 2 , z 2 − 1 − 6 i = 2. Tính giá trị nhỏ nhất của biểu thức T = z − z 1 + z − z 2 + 4
A. 2 3770 13
B. 10361 13
C. 3770 13
D. 10361 26
Gọi z 1 , z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Giá trị của biểu thức z 1 + z 2 bằng
A. 1 2
B. 4
C. 2
D. 1
Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.
Cho số phức z = a + b i thỏa mãn 3 a - 2 b = 12 . Gọi z 1 , z 2 là hai số phức thỏa mãn z 1 - 3 - 4 i và 2 z 2 - 6 - 8 i . Giá trị nhỏ nhất của biểu thức P = z - z 1 + z - 2 z 2 + 2 bằng
A. 9 - 3 2
B. 9945 13
C. 9 + 3 2
D. 9945 31
Cho số phức z thỏa điều kiện z + 2 = z + 2 i . Giá trị nhỏ nhất của biểu thức P = z − 1 − 2 i + z − 3 − 4 i + z − 5 − 6 i được viết dưới dạng ( a + b 17 ) / 2 với a, b là các hữu tỉ. Giá trị của a + b là
A. 4
B. 2
C. 7
D. 3