Hệ phương trình: x + y + 2 y - 1 + x - y = 5 y 2 + 2 = x y + y có cặp nghiệm duy nhất (x;y). Tính x + 3y.
A. 2
B. 4
C. 5
D. 7
Gọi (x;y) là nghiệm dương của hệ phương trình x + y + x - y = 4 x 2 + y 2 = 128 .Tổng x+y bằng
A. 12
B. 8
C. 16
D. 0
Cho đồ thị hàm số y = f (x) như hình vẽ.
Phương trình x + 2 ( x - 1 ) 2 có đúng 2 nghiệm phân biệt khi và chỉ khi:
A. m < 0 m = 4
B. 0 ≤ m ≤ 4
C. m > 4 m = 0
D. m = 0 m = - 4
Cho hàm số y=f(x) là hàm đa thức hệ số thực. Hình vẽ bên là đồ thị của hai hàm số y=f(x) và y=f'(x) . Phương trình f(x)= m e x có hai nghiệm thực phân biệt thuộc đoạn [0;2] khi và chỉ khi m thuộc nửa khoảng [a;b). Giá trị của a+b gần nhất với giá trị nào dưới đây ?
A. 0,27.
B. −0,54.
C. −0,27.
D. 0,54.
Hình vẽ dưới đây là đồ thị của hàm số y = 3 x - 2 x - 1 . Tìm tất cả các giá trị thực của tham số m để phương trình 3 x - 2 x - 1 = m có hai nghiệm phân biệt?
A. -3 < m < 0
B. m < -3
C. 0 < m < 3
D. m > 3
Cho hàm số y=f(x) có đồ thị trong hình bên. Phương trình f(x)=1 có bao nhiêu nghiệm thực phân biệt nhỏ hơn 2?
A. 1.
B. 2.
C. 3.
D. 0.
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau.
Tập hợp các giá trị m để phương trình f(x)=m+2 có hai nghiệm phân biệt là
A. ( 2 ; + ∞ )
B. R ∖ { - 2 }
C. ( - 2 ; + ∞ ) ∪ { - 3 }
D. (-3;-2)
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Cho hàm số y = f ( x ) liên tục trên ℝ và có đồ thị như hình vẽ bên. Xét 4 mệnh đề sau
(1) Hàm số y = f ( x ) đạt cực đại tại x 0 = 0
(2) Hàm số y = f ( x ) có ba cực trị.
(3) Phương trình y = f ( x ) có đúng ba nghiệm phân biệt
(4) Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Hỏi trong 4 mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 1
B. 3
C. 4
D. 2