Đáp án D
Ta có y ' = x 2 + 1 + x + 1 x x 2 + 1 x 2 + 1 = 0 ⇔ x 2 + 1 - x 2 - x = 0 ⇔ x = 1
Hàm số trên xác định và liên tục trên [-1;2]
Ta có y - 1 = 0 ; y 1 = 2 ; y 2 = 3 5
Do đó T = [ - 1 ; 2 ] ⇒ a 2 + b 2 = 2
Đáp án D
Ta có y ' = x 2 + 1 + x + 1 x x 2 + 1 x 2 + 1 = 0 ⇔ x 2 + 1 - x 2 - x = 0 ⇔ x = 1
Hàm số trên xác định và liên tục trên [-1;2]
Ta có y - 1 = 0 ; y 1 = 2 ; y 2 = 3 5
Do đó T = [ - 1 ; 2 ] ⇒ a 2 + b 2 = 2
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số y=f(x)có đạo hàm trên đoạn [a,b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn[a,b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Cho hàm số y = f x có đạo hàm trên đoạn a ; b . Ta xét các khẳng định sau:
(1) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị lớn nhất của f x trên đoạn a ; b .
(2) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị nhỏ nhất của f x trên đoạn a ; b
(3) Nếu hàm số f x đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 ( x 0 , x 1 ∈ a ; b ) thì ta luôn có f x 0 > f x 1 .
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Gọi S là tập tất cả các giá trị thực của tham số m để hàm số y = x − m x + m đồng biến trên hai khoảng 1 ; + ∞ v à − ∞ ; − 2 . Khẳng định nào dưới đây là đúng
A. S = [1;2]
B. S = (0;2]
C. S = 1 ; + ∞
D. S = 2 ; + ∞
Cho hàm số f n = a n + 1 + b n + 2 + c n + 3 n ∈ ℕ * với a, b, c là hằng số thỏa mãn a + b + c = 0. Khẳng định nào sau đây đúng?
A. l i m x → + ∞ f ( n ) = - 1
B. l i m x → + ∞ f ( n ) = 1
C. l i m x → + ∞ f ( n ) = 0
D. l i m x → + ∞ f ( n ) = 2
Cho hàm số y = x 3 - 3 m x 2 + 2 ( m 2 - 1 ) x - m 3 - m (m là tham số). Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;-2). Tổng tất cả các giá trị của m để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng 5 là
A. 20 17
B. - 2 17
C. 4 17
D. 14 17