Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tìm số nghiệm của phương trình x - 1 2 e x - 1 - log 2 = 0
A. 4
B. 3
C. 2
D. 0
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Tập nghiệm của phương trình log x 2 - 2 x + 2 = 1 là
A. ∅
B. - 2 ; 4
C. 4
D. - 2
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Tích các nghiệm của phương trình log 2 x + 2 - log x = 2 là
A. 10 3 - 5 2
B. 10 3 + 2 2
C. 10 3 + 5 2
D. 10 3 - 2 2
Gọi S là tập nghiệm của phương trình 2 log 2 ( 2 x - 2 ) + log 2 ( x - 3 ) 2 = 2 trên ℝ . Tổng các phần tử của S là
A. 8 + 2
B. 4 + 2
C. 6 + 2
D. 8
Gọi S là tập nghiệm của phương trình 2 l o g 2 ( 2 x - 2 ) + l o g 2 ( x - 3 ) 2 = 2 . Tổng các phần tử của S bằng:
A. 6
B. 4 + 2
C. 2 + 2
D. 8 + 2