Chọn B.
Phương pháp:
Sử dụng dấu hiệu nhận biết của tứ giác nội tiếp.
Cách giải:
Khi đó,
Vậy tập hợp S tất cả các giá trị của tham số m thỏa mãn yêu cầu đề bài có 2 phần tử là ± 1 5 .
Chọn B.
Phương pháp:
Sử dụng dấu hiệu nhận biết của tứ giác nội tiếp.
Cách giải:
Khi đó,
Vậy tập hợp S tất cả các giá trị của tham số m thỏa mãn yêu cầu đề bài có 2 phần tử là ± 1 5 .
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị, đồng thời ba điểm cực trị này cùng với gốc tọa độ O tạo thành bốn đỉnh của một tứ giác nội tiếp được. Tính tổng tất cả các phần tử của S.
B. -3
C. -1
D. 0
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 4 + 2 m x 2 − 3 m 2 có ba điểm cực trị, đồng thời ba điểm cực trị này cùng với gốc tọa độ O tạo thành bốn đỉnh của một tứ giác nội tiếp được. Tính tổng tất cả các phần tử của S
A. 2 − 2 3
B. − 2 − 2 3
C. − 1
D. 0
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 4 + 2 m x 2 − 3 m 2 có ba điểm cực trị, đồng thời ba điểm cực trị này cùng với gốc tọa độ O tạo thành bốn đỉnh của một tứ giác nội tiếp được. Tính tổng tất cả các phần tử của S.
A. 2 − 2 3 .
B. − 2 − 3 .
C. -1.
D. 0.
Tìm tập hợp S tất cả các giá trị của tham số m để đồ thị hàm số y = x 4 − 2 m 2 x 2 + m 4 + 3 có ba điểm cực trị đồng thời ba điểm cực trị đó cùng với gốc tọa độ O tạo thành tứ giác nội tiếp
A. S = − 1 3 ; 0 ; 1 3
B. S = − 1 ; 1
C. S = − 1 3 ; 1 3
D. S = − 1 2 ; 1 2
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = - x - 1 3 + 3 m 2 x - 1 - 2 có hai điểm cực trị cách đều gốc tọa độ. Tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là
A. 4.
B. 2/3
C. 1.
D. 5.
Gọi S là tập tất cả giá trị của tham số m để đồ thị hàm số y = x 4 - 2 m + 1 x 2 + m có ba điểm cực trị A, B, C sao cho OA=BC ; trong đó O là gốc tọa độ, A là điểm cực trị trên trục tung và B, C là hai điểm cực trị còn lại. Tích của tất cả các phần tử trong tập S bằng
A. 8
B. -8
C. 4
C. -4
Tìm các giá trị của tham số m để đồ thị hàm số y = x 4 − 2 m 2 x 2 + m 4 + 1 có ba điểm cực trị. Đồng thời ba điểm cực trị đó cùng với gốc O tạo thành một tứ giác nội tiếp.
A. m = ± 1
B. m = -1
C. m = 1
D. không tồn tại m
Cho hàm số y = x 3 - 3 m x 2 + 2 ( m 2 - 1 ) x - m 3 - m (m là tham số). Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;-2). Tổng tất cả các giá trị của m để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng 5 là
A. 20 17
B. - 2 17
C. 4 17
D. 14 17
Có tất cả bao nhiêu giá trị thực của tham số m để đồ thị của hàm số y = x 4 - 2 m 2 + 2 có ba điểm cực trị cùng với điểm D(2;1) tạo thành một tứ giác nội tiếp được đường tròn?
A. 0
B. 2
C. 3.
D. 1