Gọi S là tập các giá trị m thỏa mãn hệ sau có nghiệm x 2 - 1 4 + m x - 1 + x + 1 + 2019 m ≤ 0 m x 2 + 3 m - x 4 - 1 ≥ 0 . Trong tập S có bao nhiêu phần tử là số nguyên?
A. 1
B. 0
C. 2
D. 4
Cho 0 ≤ x , y ≤ 1 thỏa mãn 2017 1 − x − y = x 2 + 2018 y 2 − 2 y + 2019 . Gọi M,mlần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y . Khi đó M + m bằng bao nhiêu?
A. 136/3
B. 391/16
C. 383/16
D. 25/2
Cho 0 ≤ x ; y ≤ 1 thỏa mãn 2017 1 − x − y = x 2 + 2018 x 2 − 2 y + 2019 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y . Khi đó M + m bằng bao nhiêu?
A. 136 3
B. 391 16
C. 383 16
D. 25 2
Cho phương trình m ln 2 x + 1 - x + 2 - m ln x + 1 - x - 2 = 0 1 . Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x 1 < 2 < 4 < x 2 là khoảng a ; + ∞ . Khi đó, a thuộc khoảng
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Trong tập các số phức, cho phương trình z 2 - 6 z + m = 1 , m∈R (1). Gọi m 0 là một giá trị của m để phương trình (1) có hai nghiệm phân biệt x m 0 thỏa mãn z 1 z 1 ¯ = z 2 z 2 ¯ . Hỏi trong khoảng (0;20) có bao nhiêu giá trị m
A. 13
B. 11
C. 12
D. 10
Cho hệ phương trình 2 x − y − 2 y + x = 2 y 2 x + 1 = m + 2 2 .2 y . 1 − y 2 ( 1 ) , m là tham số. Gọi S là tập các giá trị nguyên để hệ (1) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
A. 0
B. 1
C. 3
D. 2
Cho hàm số f x có đạo hàm trên ℝ thỏa mãn f x + h - f x - h ≤ h 2 , ∀ x ∈ ℝ , ∀ h > 0 .Đặt g x = x + f ' x 2019 + x + f ' x 29 - m - m 4 - 29 m 2 + 100 sin 2 x - 1 , m là tham số nguyên mà m < 27. Gọi S là tập hợp tất cả các giá trị nguyên của m sao cho hàm số g (x) đạt cực tiểu tại x = 0. Tính tổng bình phương các phần tử của S.
A. 108
B. 58
C. 100
D. 50
Cho hai số thực x, y thỏa mãn: log 3 ( y 2 + 8 y + 16 ) + l o g 2 [( 5 − x ) ( 1 + x ) ]=2log 3 5 + 4 x − x 2 3 + log 2 ( 2 y + 8 ) 2 . Gọi S là tập các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức P = x 2 + y 2 − m không vượt quá 10. Hỏi S có bao nhiêu tập con không phải là tập rỗng?
A. 2047
B. 16383
C. 16384
D. 32
Cho x, y là các số thực thỏa mãn x + y = x - 1 + 2 y + 2 Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của P = x 2 + y 2 + 2 ( x + 1 ) ( y + 1 ) + 8 4 - x - y Tính giá trị M + m
A. 41
B. 44
C. 42
D. 43