Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi \(n\) là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\) .
(Đây là bài toán trong đề hsg Casio nha, mình đang cần gấp)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{n\left(n+1\right)\left(2n+1\right)}{6n}\) là số chính phương.
tìm các số nguyên n thỏa mãn
\(n^2+2014\)
là số chính phương
chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2+4 và n2+16 là các số nguyên tố n chia hết cho 5
Tìm số tự nhiên n sao cho \(2^7+2^{11}+2^n\)là số chính phương
cho a1, a2, ..., a2017 là các số tự nhiên thỏa mãn \(\frac{1}{a1_{ }^2}+\frac{1}{a2^2}+...+\frac{1}{a_{ }2017^2}>4\) chứng minh rằng trong 2017 số trên tồn tại ít nhất 4 số bằng nhau