Gọi r , R lần lượt là bán kính mặt cầu nội tiếp và ngoại tiếp tứ diện đều ABCD. Tính tỉ số R r ?
![]()

![]()

Tứ diện ABCD là tứ diện đều nội tiếp trong mặt cầu bán kính R. Tính độ dài của cạnh tứ diện đều theo R
A. R 2
B. R 3
C. 2 R 2 3
D. R 6 2
Cho hình cầu tâm O bán kính R , tiếp xúc với mặt phẳng (P) . Một hình nón tròn xoay có đáy nằm trên (P), có chiều cao h = 15 , có bán kính đáy bằng R . Hình cầu và hình nón nằm về một phía đối với mặt phẳng (P) . Người ta cắt hai hình đó bởi mặt phẳng (Q) song song với (P) và thu được hai thiết diện có tổng diện tích là S . Gọi x là khoảng cách giữa (P) và (Q), ( 0 < x ≤ 5 ) . Biết rằng S đạt giá trị lớn nhất khi x = a b (phân số a b tối giản). Tính giá trị T =a+b .

![]()
![]()
![]()
![]()
Cho tứ diện ABCD. Gọi h A , h B , h C , h D lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng: 1 h A + 1 h B + 1 h C + 1 h D = 1 r
Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD). Gọi V 1 ; V 2 lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện ABMN. Tính V 1 + V 2 ?




Cho một hình cầu nội tiếp hình nón tròn xoay có góc ở đỉnh là 2 α , bán kính đáy là R và chiều cao là h. Một hình trụ ngoại tiếp hình cầu đó có đáy dưới nằm trong mặt phẳng đáy của hình nón (tham khảo hình vẽ). Gọi V 1 , V 2 lần lượt là thể tích của hình nón và hình trụ, biết rằng V 1 ≠ V 2 . Gọi là giá trị lớn nhất của tỉ số V 2 V 1 . Giá trị của biểu thức P=48M+25 thuộc khoảng nào dưới đây?

A. (40;60)
B. (60,80)
C. (20,40)
D. (0,20)
Cho tứ diện đều ABCD có một đường cao A A 1 . Gọi I là trung điểm A A 1 . Mặt phẳng (BCI) chia tứ diện ABCD thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.

![]()
![]()

Cho tứ diện đều ABCD có mặt cầu nội tiếp là S 1 và mặt cầu ngoại tiếp là S 2 . Một hình lập phương ngoại tiếp S 2 và nội tiếp trong mặt cầu S 2 . Gọi r 1 , r 2 , r 3 lần lượt là bán kính các mặt cầu S 1 , S 2 , S 3 . Khẳng định nào sau đây đúng?




Cho hình chóp S.ABCD có tam giác ABC cân tại A, cạnh bên là a. Biết rằng khoảng cách từ đỉnh S tới mặt đáy (ABC) bằng hai lần đường cao kẻ từ đỉnh A của tam giác ABC đồng thời các vuông tại B và C. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện S.ABC



