gọi a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2; b = 1/2^2 + 1/3^2 + ... + 1/50^2. cmr a < 1/2 < b
Cho A= \(\frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+.....+\frac{1}{49.50^2}\)
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)
Chứng minh : A < \(\frac{1}{2}\)< B
So sánh A và B với \(\dfrac{1}{2}\) biết :
\(A=\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+........+\dfrac{1}{49.50^2}\) và
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{50^2}\)
a)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)
b)B=\(\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{100}< \frac{1}{2}\)
c)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
d)A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}.CMR\frac{7}{12}< A< \frac{5}{6}\)
AI ĐÚNG MINK \(\left(TICK\right)\)CHO (làm đc trên 2 câu)
Tính.
a)A=1/1.3.5+1/3.5.7+1/5.7.9+...+1/97.99.101
b)B=2^2019-2^2018-2^2017-...-2+1
c)C=1/1.2+1/3.4+...+1/49.50-1/50-1/49-...-1_2
d)D=1/2!+5/3!+11/4!+..+99.100-1/100!
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Cho A = \(\frac{1}{1.2^2}\)+\(\frac{1}{2.3^2}\)+\(\frac{1}{3.4^2}\)+......+\(\frac{1}{49.50^2}\)
B=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.....+\(\frac{1}{50^2}\)
Chứng minh A < \(\frac{1}{2}\)<B
cho A= 1/1.2+1/3.4+1/5.6+....+1/49.50
B= 1/1+1/2+1/3+1/4+....+1/49+1/50
C=`1/2+1/4+1/6+....+1/48+1/50
Chứng minh A=B-2C
1.Tính A=1/4+1/12+1/24....+1/20200
B=1/2+5/6+11/12+....+9899/9900
2.CMR:1/1.2+1/3.4+1/5.6+.....+1/49.50=1/26+1/27+...+1/50