Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Ánh Ngọc

giúp vs ạa

Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 12:34

Bài 1:

\(A=2+2^2+2^3+...+2^{2003}+2^{2004}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+2^4+...+2^{2002}\right)⋮7\)

Bài 2:

\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\cdot\left(2+2^5+...+2^{57}\right)⋮15\)

Bài 3:

\(A=1+3+3^2+3^3+...+3^{1990}+3^{1991}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1989}+3^{1990}+3^{1991}\right)\)

\(=13+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

Bài 4:

\(A=4+4^2+4^3+4^4+...+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)

\(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)\)

\(=20\left(1+4^2+...+4^{22}\right)⋮20\)


Các câu hỏi tương tự
Ngân Giang
Xem chi tiết
Bùi Ánh Ngọc
Xem chi tiết
Vũ Nguyễn Anh Thúy 6/7
Xem chi tiết
Thư Kỳ 6/2
Xem chi tiết
lê thị ngọc bích
Xem chi tiết
Ngọcc
Xem chi tiết
Bùi Ánh Ngọc
Xem chi tiết
qtrang đangiu1tg
Xem chi tiết
Vũ Nguyễn Anh Thúy 6/7
Xem chi tiết