Đầu tiên tiền điều kiện để phương trình bậc 2 có 2 nghiệm thuộc [0; 1] trước đi sẽ có điều kiện của a,b,c lúc đó thì giải bất như bài bất bình thường.
Đầu tiên tiền điều kiện để phương trình bậc 2 có 2 nghiệm thuộc [0; 1] trước đi sẽ có điều kiện của a,b,c lúc đó thì giải bất như bài bất bình thường.
1)Giải phương trình: \(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3.\)
2)Cho các số thực x, y thỏa mãn \(x^2+y^2=1\)Tìm GTNN và GTLN của biểu thức :
\(T=\sqrt{4+5x}+\sqrt{4+5y}.\)
3)Cho các số thực dương a,b,c . Chứng minh rằng
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}.\)
Đề của trường ^^. mn giúp tui ,nhất là câu 2 tìm min ...
Cho các số thực a,b,c thỏa 0<a,b,c<1 và ab+bc+ca=1. Tìm GTNN của biểu thức:
\(A=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
Cho phương trình \(ax^2+bx+c=0\) với a, c > 0 có hai nghiệm x1, x2 thỏa mãn điều kiện \(x_1\ge1;x_2\ge1\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{\left(2a-b\right)\left(1+\sqrt{\frac{c}{a}}\right)}{a-b+c}\)
Cho a,b,c là các số thực thỏa mãn 0 < a,b,c < 1 và ab + bc + ca = 1
Tìm GTNN \(P=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
cho phương trình \(ax^2+bx+c=0\left(a\ne0\right)\)) có 2 nghiệm \(x_1;x_2\)thỏa mãn điều kiện \(0\le x_1\le x_2\le2\). Tìm GTLN của biểu thức
\(Q=\frac{2a^2-3ab+b^2}{2a^2-ab+ac}\)
cho đa thức \(P\left(x\right)=ax^2+bx+c\) thỏa mãn đồng thời các điều kiện \(P\left(x\right)\ge0\)với mọi số thực x và b>a. Tìm GTNN của biểu thức \(Q=\frac{a+b+c}{b-a}\)
Cho các số thực a, b, c thỏa mãn a+b+c=3. Tìm GTLN của biểu thức:\(P=3\left(ab+bc+ca\right)+\frac{1}{2}\left(a-b\right)^2+\frac{1}{4}\left(b-c\right)^2+\frac{1}{8}\left(c-a\right)^2\)
1.Tìm tất cả các số nguyên tố p sao cho só 2p+2 là tích 2 số tự nhên liên tiếp
2.Cho a, b, c, d là 4 số thực đôi 1 khác nhau. Biết rằng a,b là 2 nghiệm của phương trình \(x^2+mx+1=0\) (m, n là 2 số thực).
CM pt \(\left(a-c\right)\left(b-c\right)x^2+2\left(a-b\right)\left(c-d\right)x+\left(a-d\right)\left(d-b\right)=0\)
có 2 nghiệm thực phân biệt
Cho a,b,c là các số thực dương thỏa mãn \(b^2+c^2\le a^2\). Tìm GTNN của biểu thức: \(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)