1. \(sin60^031'=cos\left(90^0-60^031'\right)=cos29^029'\)
\(cos75^012'=sin\left(90-75^012'\right)=sin14^048'\)
\(cot80^0=\dfrac{1}{tan80^0}=tan\left(90^0-80^0\right)=tan10^0\)
\(tan57^030'=\dfrac{1}{tan\left(90^0-57^030'\right)}=\dfrac{1}{tan32^030'}\)
2.a) \(BC=\sqrt{AB^2+AC^2}=\sqrt{21^2+72^2}=75\left(cm\right)\)
Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{72}{75}=\dfrac{24}{25}\Rightarrow\angle B\approx74\)
\(\Rightarrow\angle C\approx16\)
b) Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{21.72}{75}=\dfrac{504}{25}\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{21^2}{75}=\dfrac{147}{25}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{72^2}{75}=\dfrac{1728}{25}\left(cm\right)\end{matrix}\right.\)
c) Vì BD là phân giác góc B \(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{CD}\)
\(\Rightarrow\dfrac{AD}{CD}=\dfrac{7}{25}\Rightarrow\dfrac{CD}{AD}=\dfrac{25}{7}\Rightarrow CD=\dfrac{25}{7}AD\)
Ta có: \(AD+CD=AC\Rightarrow AD+\dfrac{25}{7}AD=72\Rightarrow\dfrac{32}{7}AD=72\)
\(\Rightarrow AD=\dfrac{63}{4}\) (cm)
3. Kẻ đường cao BH
Ta có: \(BC^2=BH^2+HC^2=AB^2-AH^2+\left(AC-AH\right)^2\)
\(=AB^2-AH^2+AC^2+AH^2-2AC.AH=AB^2+AC^2-2.AC.AH\left(1\right)\)
Ta có: \(cosBAC=\dfrac{AH}{AB}\Rightarrow cos60=\dfrac{AH}{AB}\Rightarrow\dfrac{AH}{AB}=\dfrac{1}{2}\Rightarrow2AH=AB\left(2\right)\)
Thế (2) vào (1) \(\Rightarrow BC^2=AB^2+AC^2-AC.AB\)