Ta có: \(\dfrac{3}{n\left(n+3\right)}=\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}=\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}=\dfrac{1}{n}-\dfrac{1}{n+3}\)
Do đó:
\(C=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..+\dfrac{1}{37}-\dfrac{1}{40}\)
\(=1-\dfrac{1}{40}=\dfrac{39}{40}\)
Đúng 0
Bình luận (0)