3\(x^2\).(5\(x\) + 1) + 6\(x^3\).(5\(x\) + 2) = 9\(x^3\) .(5\(x\) + 3)
15\(x^3\) + 3\(x^2\) + 30\(x^4\) + 12\(x^3\) = 45\(x^4\) + 27\(x^3\)
(15\(x^3\) + 12\(x^3\)) + 3\(x^2\) + 30\(x^4\) - 45\(x^4\) - 27\(x^3\) = 0
27\(x^3\) + 3\(x^2\) - 15\(x^4\) - 27\(x^3\) = 0
3\(x^2\) - 15\(x^4\) = 0
3\(x^2\).(1 - 5\(x^2\)) = 0
\(\left[{}\begin{matrix}x^2=0\\1-5x^2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\5x^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\mp\dfrac{\sqrt{5}}{5}\end{matrix}\right.\)