Cho a, b, c là các số nguyên thỏa mãn a+7b+2024c = c3 . Chứng minh rằng a^3+b^3+c^3 chia hết cho 6.
`a,b,c` là các số nguyên thỏa mãn `a+b+2024c=c^3`. Chứng tỏ `a^3 +b^3 +c^3 \vdots 6`.
Cho ba số nguyên a ; b ;c thỏa mãn điều kiện a + b + c chia hết cho 6 . Chứng minh rằng tổng a3 + b3 + c3 cũng chia hết cho 6
cho a,b,c,d là các số nguyên thỏa mãn 5(a^3 + b^3 )=13(c^3 + d^3). Chứng minh a+b+c+d chia hết cho
HELP ME....MAI MÌNH NỘP RỒI
mình cảm ơn
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3
Cho a,b,c,d là các số nguyên thỏa mãn : a3+b3=2(c3+d3)
Chứng minh rằng a+b+c+d chia hết cho 3
Cho các số nguyên a,b, c,d thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) Chứng minh rằng a+b+c+d chia hết cho 3.
Biết a; b; c là ba số nguyên thỏa mãn (a3 + b3 + c3) chia hết cho 27. Chứng minh rằng: Cả ba số a; b; c đều chia hết cho 3 hoặc hai trong ba số đó có tổng chia hết cho 9
Cho các số nguyên a,b,c thỏa mãn a^3+b^3+c^3=2007. Chứng minh a.b.c chia hết cho 3