3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:a) EF^2/4 +AH^2=AE^2b) 2BME=ACB-Bc) BE=CF
Cho tam giác abc (ab>ac), m là trung đ' của bc. đường đi qua m và vuông góc với tia phân giác của góc a tại h cắt hai tia ab,ac lần lượt ở e và f.cmr:
a)\(\frac{ef^2}{4}+ah^2=ae^2\)
b)\(\widehat{2bme}=\widehat{acb}-\widehat{b}\)
c)be=cf
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Cho tam giác ABC ( AB > AC ) M là trung điểm của BC . Đường thẳng vuông góc với tia phân giác của góc A tại M cắt cạnh AB , AC lần lượt tại E và F và cắt tia phân giác của góc A tại H .
CMR :
a, EH = HF
b, 2 . góc BME = góc ACB - góc B
c, FE bình : 4 + AH bình = AE bình
d, BE = CF
Cho ∆ABC có AB>AC. Từ trung điểm M của BC vẽ một đường vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Chứng minh rằng: a) BE = CF b) AE=AB+AC/2 , BE=AB-AC c) góc BME= (góc ACB - góc B )/2 🙏 Giúp mình với 🙏
Cho tam giác ABC có AB>AC. Từ trung điểm M của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H, cắt AB, AC lần lượt tại E và F. Chứng minh:
a) EH = HF
b) 2 lần góc BME = góc ACB - góc B
c) EF2 chia 4 + AH2 = AE2
d) BE = CF
Cho tam giác ABC (AB>AC) .M là trung điểm của BC. Đừờng thẳng đi qua M vuông góc với tia phân giác của góc A tại H cắt AB và AC lần lượt tại E và F.Chứng minh rằng:
a) 2 lần góc BME = góc ACB - góc B
b) BE = CF
cho tam giác ABC có AB > AC M là trung điểm của BC (MB = MC) từ M vẽ đường thẳng vuông góc với tia phân giác của góc A cắt tia phân giác tại H cắt AB,AC lần lượt tại E và F. CMR:
a) BE = CF
b) AE = AB+AC/2
BE = AB-AC/2
c) góc BME = GÓC ACB - B/2
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ BM//EF a, C/m ABM là tam giác cân b, C/m MF=BE=CF c, Qua D vẽ đường vuông góc với BC cắt tia AH tại I. C/m IF vuông góc với AC