Giúp mình với các bạn
a) Tìm các nghiệm nguyên của phương trình: \(x+xy+y=-6\)
b) Cho x,y > 0. Chứng minh rằng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
Áp dụng. Cho \(x>o,y>o\)và \(x+y=2\)
Tìm giá trị nhỏ nhất của \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\)
c)Tìm các số nguyên x,y,z thỏa mãn: \(x^2+y^2+z^2< xy+3y+2z-3\)
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~
\(c)\)\(x^2+y^2+z^2< xy+3y+2z-3\)
\(\Leftrightarrow\)\(x^2+y^2+z^2-xy-3y-2z+3< 0\)
Mà x, y, z nguyên nên \(x^2+y^2+z^2-xy-3y-2z+3\le-1\)
\(\Leftrightarrow\)\(\left(x^2-xy+\frac{y^2}{4}\right)+3\left(\frac{y^2}{4}-y+1\right)+\left(z^2-2z+1\right)\le-1+1\)
\(\Leftrightarrow\)\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2\le0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-\frac{y}{2}\right)^2=0\\3\left(\frac{y}{2}-1\right)^2=0\\\left(z-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{y}{2}=\frac{2}{2}=1\\y=2\\z=2\end{cases}}}\)
Vậy \(x=;y=2;z=2\)
Chúc bạn học tốt ~