Ta có:\(1001=1000+1=x+1\)
\(x^8-1001x^7+1001x^6+...+1001x^2-1001x+250\\ =x^8-\left(x+1\right)x^7+\left(x+1\right)x^6+...+\left(x+1\right)x^2-\left(x+1\right)x\\ =x^8-x^8-x^7+x^7+x^6+...+x^3+x^2-x^2-x+250\\ =-x+250=-1000+250\\ =-750\)
Ta có:\(1001=1000+1=x+1\)
\(x^8-1001x^7+1001x^6+...+1001x^2-1001x+250\\ =x^8-\left(x+1\right)x^7+\left(x+1\right)x^6+...+\left(x+1\right)x^2-\left(x+1\right)x\\ =x^8-x^8-x^7+x^7+x^6+...+x^3+x^2-x^2-x+250\\ =-x+250=-1000+250\\ =-750\)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
A = \(\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+....+\frac{1001}{1000^2}+1000\)
Cho A= 1001/1000^2+1 + 1001/1000^2+2 + .... + 1001/1000^2+1000.
Chứng minh rằng: 1 < A^2 < 4
Chứng minh rằng 1 < A < 2 :
\(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
Cho A= 1001/10002 + 1 + 1001/10002 + 2 + ... + 1001/10002 + 1000
Chứng minh rằng 1<A2 <4
CMR A < A^2 < 4 biết
A =1001/1002^+1 +1001/1002^2+2 +...+1001/1002^2+1000
Cho \(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
Chứng minh \(1< A^2< 4\)
CẦN GẤP!!! LÀM ĐÚNG CÓ TICK!!
Cho A=(1001/10002+1)+(1001/10002+2)+...+(1001/10002+1000)
Chứng minh: 1<A2<4
Cho A = \(\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+\)....... \(+\frac{1001}{1000^2+1000}\) .
CMR : \(1< A^2< 4\)