Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hi

Giúp mình với ạ

Sử dụng Cosi để giải nhé

Tìm GTNN của B

B=x+5/căn x+2 (với x>0)

Phạm Thị Thùy Linh
12 tháng 7 2019 lúc 23:30

\(đkcđ\Leftrightarrow x\ge0\)

\(B=\frac{x+5}{\sqrt{x}+2}=\frac{x-4+9}{\sqrt{x}+2}=\frac{x-4}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}.\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}=\sqrt{x}-2+\frac{9}{\sqrt{x}+2}\)

\(=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\)

Áp dụng bđt Cô - si cho hai số dương \(\sqrt{x}+2\)và \(\frac{9}{\sqrt{x}+2}\), ta có :

\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2\sqrt{\frac{\left(\sqrt{x}+2\right).9}{\sqrt{x}+2}}\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2.3\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge6-4\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge2\)

Hay \(B_{min}=2\)\(\Leftrightarrow\sqrt{x}+2=\frac{9}{\sqrt{x}+2}\)

\(\Rightarrow\sqrt{x}+2-\frac{9}{\sqrt{x}+2}=0\)

\(\Rightarrow\frac{\left(\sqrt{x}+2\right)^2-9}{\sqrt{x}+2}=0\)

\(\Rightarrow\left(\sqrt{x}+2\right)^2-3^2=0\)

\(\Rightarrow\left(\sqrt{x}+2-3\right)\left(\sqrt{x}+2+3\right)=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)=0\)

Vì \(\sqrt{x}+5>0\Rightarrow\sqrt{x}-1=0\)

\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)

\(KL:B_{min}=2\Leftrightarrow x=1\)


Các câu hỏi tương tự
Nguyễn Hi
Xem chi tiết
Võ Phương Linh
Xem chi tiết
NBT
Xem chi tiết
lê đạt
Xem chi tiết
TFBOYS shuai tai
Xem chi tiết
Thanh Tâm
Xem chi tiết
Hoàng Văn Hưng
Xem chi tiết
ngoc an
Xem chi tiết
Cai Nguyễn Quốc Thịnh
Xem chi tiết