Bài 1:
1: \(191-\left[10^2-\left(97-94\right)^2\cdot2018^0\right]\)
\(=191-100+3^2\)
=91+9=100
3: \(2345-1000:\left[19-2\cdot\left(21-18\right)^2\right]\)
\(=2345-1000:\left(19-2\cdot9\right)\)
=2345-1000=1345
5: \(\left\{\left[\left(37+13\right):5\right]-45:5\right\}\cdot7\)
\(=\left[50:5-45:5\right]\cdot7=5:5\cdot7=7\)
7: \(2^{11}:\left\{1026-\left[\left(3^4+1\right):41\right]\right\}\)
\(=2^{11}:\left\{1026-82:41\right\}\)
\(=2^{11}:1024=2\)
9: \(12+3\left\{90:\left[39-\left(2^3-5\right)^2\right]\right\}\)
\(=12+3\cdot\left\{90:\left[39-3^2\right]\right\}\)
\(=12+3\cdot\left[90:30\right]=12+3\cdot3=21\)
Bài 2:
1: \(x^2+1=82\)
=>\(x^2=82-1=81\)
=>\(\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
5: \(\left(x-1\right)^3=9^3\)
=>x-1=9
=>x=9+1=10
9: \(\left(x+1\right)^3=27\)
=>\(\left(x+1\right)^3=3^3\)
=>x+1=3
=>x=2
2: \(3^{2x+5}=3^{25}\)
=>2x+5=25
=>2x=20
=>x=10
6: \(3^{2x+1}=27\)
=>\(3^{2x+1}=3^3\)
=>2x+1=3
=>2x=2
=>x=1
10: \(8^{3x+1}=64\cdot8^5\)
=>\(8^{3x+1}=8^2\cdot8^5=8^7\)
=>3x+1=7
=>3x=6
=>x=2
14: \(13^{2x+1}=13^2\cdot13\)
=>\(13^{2x+1}=13^3\)
=>2x+1=3
=>2x=2
=>x=1