a:Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BH\cdot BC=BA^2\)
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{DA}{AC}=\dfrac{DB}{CB}\)
=>\(\dfrac{DA}{24}=\dfrac{DB}{30}\)
=>\(\dfrac{DA}{4}=\dfrac{DB}{5}\)
mà DA+DB=AB=18cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{4}=\dfrac{DB}{5}=\dfrac{DA+DB}{4+5}=\dfrac{18}{9}=2\)
=>\(DA=4\cdot2=8\left(cm\right)\)