a: \(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Khi x=4-2căn 3 thì \(A=\dfrac{2\left(\sqrt{3}-1\right)-2}{\sqrt{3}-1+1}=\dfrac{2\sqrt{3}-4}{\sqrt{3}}=2-\dfrac{4\sqrt{3}}{3}\)
c: \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
KhiA=-1/2 thì \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{-1}{2}\)
=>\(4\sqrt{x}-2=-\sqrt{x}-1\)
=>5căn x=1
=>x=1/25
d: Để A>0 thì 2 căn x-1>0
=>x>1/4
Để A<0 thì 2 căn x-1<0
=>0<x<1/4
e: Để A nguyên thì \(2\sqrt{x}+2-3⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;3\right\}\)
=>\(x\in\left\{0;4\right\}\)